Descriptive and Intuitive Population-Based Cardiac Motion Analysis via Sparsity Constrained Tensor Decomposition
نویسندگان
چکیده
Analysing and understanding population-specific cardiac function is a challenging task due to the complex dynamics observed in both healthy and diseased subjects and the difficulty in quantitatively comparing the motion in different subjects. It was proposed to use affine parameters extracted from a Polyaffine motion model for a group of subjects to represent the 3D motion regionally over time for a group of subjects. We propose to construct from these parameters a 4-way tensor of the rotation, stretch, shear, and translation components of each affine matrix defined in an intuitive local coordinate system, stacked per region, for each affine component, over time, and for all subjects. From this tensor, Tucker decomposition can be applied with a constraint of sparsity on the core tensor in order to extract a few key, easily interpretable modes for each subject. Using this construction of a data tensor, the tensors of multiple groups can be stacked and collectively decomposed in order to compare and discriminate the motion in each group by analysing the different loadings of each combination of modes for each group. The proposed method was applied to study and compare left ventricular dynamics for a group of healthy adult subjects and a group of adults with repaired Tetralogy of Fallot.
منابع مشابه
PArallel RAndomly COMPressed Cubes (PARACOMP): A Scalable Distributed Architecture for Big Tensor Decomposition
This article combines a tutorial on state-of-art tensor decomposition as it relates to big data analytics, with original research on parallel and distributed computation of low-rank decomposition for big tensors, and a concise primer on Hadoop-MapReduce. A novel architecture for parallel and distributed computation of low-rank tensor decomposition that is especially well-suited for big tensors ...
متن کاملIdentification of Overlapping Communities via Constrained Egonet Tensor Decomposition
Detection of overlapping communities in real-world networks is a generally challenging task. Upon recognizing that a network is in fact the union of its egonets, a novel network representation using multi-way data structures is advocated in this contribution. The introduced sparse tensor-based representation exhibits richer structure compared to its matrix counterpart, and thus enables a more r...
متن کاملAn Iterative Reweighted Method for Tucker Decomposition of Incomplete Multiway Tensors
We consider the problem of low-rank decomposition of incomplete multiway tensors. Since many real-world data lie on an intrinsically low dimensional subspace, tensor low-rank decomposition with missing entries has applications in many data analysis problems such as recommender systems and image inpainting. In this paper, we focus on Tucker decomposition which represents an N th-order tensor in ...
متن کاملA social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملSome Advances in Role Discovery in Graphs
Role discovery in graphs is an emerging area that allows analysis of complex graphs in an intuitive way. In contrast to other graph problems such as community discovery, which finds groups of highly connected nodes, the role discovery problem finds groups of nodes that share similar graph topological structure. However, existing work so far has two severe limitations that prevent its use in som...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015